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Mathematical explanation of photonic experiments

Like a classical bit, a quantum bit (qubit) has two basis states. However, we use "ket" notation to
represent them:

 reprents the state 0 and
 reprents the state 1.

Basic states

|0⟩

|1⟩

It flips the value:

 and
.

NOT gate (operator)

X|0⟩ = |1⟩

X|1⟩ = |0⟩

It creates a combination of the basis state:

and

.

Here the scalar values are called as amplitudes.

If measured, we observe the states  and  with probability  after applying a Hadamard to

a basis state.

Hadamard gate (operator)

H|0⟩ = |0⟩ + |1⟩
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The probabilities are calculated based on amplitudes.

For example, a qubit can be in a quantum state as

.

Amplitudes and probabilities

|u⟩ = a|0⟩ + b|1⟩



Then, the probabilities of being in states  and  are  and .

As the total probability must be 1, then we have

.

Note that  and  can also be complex numbers.

|0⟩ |1⟩ |a|2 |b|2

|a + |b = 1|2 |2

a b

In the above example, if both  and  are non-zero, then we say that the qubit is in a
superposition (of  and ).

When in a superposition, applying a quantum operator (e.g., Hadamard) can create
interferences.

Quantum superposition

a b

|0⟩ |1⟩

Re-visting the photon experiments

We start in state .

We apply a Hadamard operator. Then, our quantum state is

.

We make a measurement.

Thus, we obtain  and  with probability .

After the measurement, the state of qubit is the observed outcome.

Experiment 1
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We repeat Experiment 1, but we continue in the case of .

We have  and  with probability  after the measurement.

If the measurement outcome is , we apply a second Hadamard. Our quantum state in this
branch is

After measuring, we obtain  and  with probability .

Experiment 2
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Thus, we can observe  with probability .

And, we can observe  with probability .
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We start in  and apply a Hadamard operator twice.

After the first Hadamard:

.

After the second Hadamard:

.

We obtain four outcomes and we add them all:

.

That is: .

Here s are interfered constructively, and s are interfered destructively.

Experiment 3
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( |0⟩ + |0⟩) + ( |1⟩ − |1⟩) = |0⟩
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Repeat Experiment 3 by starting in .

Exercise

|1⟩

It flips the sign of .

If we are in  and apply , we obtain :

.

Similarly, if we are in  and apply , we obtain .

 GateZ

|1⟩

|+⟩ Z |−⟩

Z ( |0⟩ + |1⟩) = |0⟩ − |1⟩ = |−⟩
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State transition diagram



This part is optional.

We represent the quantum states as vectors.

 and

.

We represent the operators (gates) as matrices:

We observe that

.

Applying a quantum operator, say  to a quantum state, say , is represented as amtrix-vector
multiplication:

 , where  is the new quantum state.

Using Matrices and Vectors
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HH = XX = ZZ = I

U |u⟩

|v⟩ = U |u⟩ |v⟩

Calculate  and  by using matrices and vectors.

Exercise

H|0⟩ H|1⟩


